The First Nitrogen NMR Spectroscopic Study of Nitrile Imides (Nitrilimines)

Klaus Horchler von Locquenghien, Régis Réau and Guy Bertrand*

Laboratoire de Chimie de Coordination du CNRS, 205, route de Narbonne, 31077 Toulouse, Cédex, France

¹⁴N NMR spectroscopy provides a powerful tool to distinguish easily nitrile imides from the isomeric diazo compounds; the chemical shift variations of the N_{α} resonance reflect the electronic interaction between the substituents and the nitrile imide skeleton (–CN $_{\alpha}N_{\beta}$ –).

Until recently, nitrile imides A were considered as transient intermediates and, thus, had been spectroscopically characterized only by IR and UV spectroscopy in matrices at 85 K^{1a-c} or by mass^{1c} and real time photoelectron spectroscopy^{1d} in the gas phase. The first derivatives of type A, stable at ambient temperatures, were prepared using heteroatom substituents.² The key step in the synthesis is electrophilic attack at the terminal nitrogen atom of a diazo lithium salt **B**. Depending on the nature of the reagents, the reaction can also occur at carbon leading to isomeric diazo compounds **C**. Moreover, the rearrangement of nitrile imides A into diazo compounds **C** has been observed.^{2a-c,f,g} Thus, it was of interest to find a rapid and reliable method to distinguish nitrile imides A from their diazo isomers **C** (Scheme 1).

The IR absorptions for both types of compounds are found in a similar range.² For phosphorus-substituted derivatives ³¹P NMR spectroscopy has proved to be valuable,^{2*a*-*e*} but this is, of course, not generally applicable.

In Table 1, the nitrogen and ¹³C NMR data for the $CN_{\alpha}N_{\beta}$ skeleton of some nitrile imides **1–8** and of related diazo compounds **9–14** are given. It is clear from the data that the ¹³C chemical shift of the carbon atom bound to nitrogen can

serve as a criterion to differentiate between the two isomeric structures. However, observation of these ¹³C resonances is hampered owing to the fairly long longitudinal relaxation time $T_1(^{13}C)$. In addition, the transverse relaxation time $T_2(^{13}C)$ is considerably shortened by scalar relaxation of the second kind caused by the adjacent ¹⁴N nucleus.³ Further difficulties arise when heteronuclei like ¹¹B or ³¹P are attached to these carbon atoms, giving rise to additional broadening or splitting, respectively.

-20 -40 -60 -80 -100-120-140-160-180-200-220-240-260 δ

Fig. 1 18.08 MHz ¹⁴N NMR spectra of nitrile imide 1 and diazo compound 9, measured for \approx 15% solutions in C₇D₈ at 301 K. Spectrometer time for each spectrum: \approx 5 min.

Table 1 Nitrogen and	¹³ C NMR data ^{<i>a</i>}	of nitrile imides	1-8 and related	l diazo compounds 9–14
----------------------	--	-------------------	-----------------	------------------------

	Compound		_						
No.	R	E	$\delta N_{\alpha}(v_{1/2})$	$\delta N_\beta(v_{1/2})$	$\delta N_{misc.}(v_{1/2})$	Solv.	T/K	δ(13C)(CN)	Solv.
12g 22d 312 412 52d 612 72b 82e	$\begin{array}{l} Pr^{i_{3}}Si \\ Pr^{i_{2}}N)_{2}B \\ (c-Hex_{2}N)_{2}B \\ (c-Hex_{2}N)_{2}B \\ (Pr^{i_{2}}N)_{2}B \\ (Pr^{i_{2}}N)_{2}P \\ (Pr^{i_{2}}N)_{2}P(S) \\ (Pr^{i_{2}}N)_{2}P(S) \end{array}$	$\begin{array}{c} SiPr^{i_{3}} \\ B(NPr^{i_{2}})_{2} \\ B(Nc-Hex_{2})_{2} \\ P(NPr^{i_{2}})_{2} \\ P(NPr^{i_{2}})_{2} \\ P(NPr^{i_{2}})_{2} \\ P(NPr^{i_{2}})_{2} \\ P^{+}(Me)(NPr^{i_{2}})_{2}^{b} \end{array}$	$\begin{array}{r} -189.0(78)\\ -186.4(140)\\ -188.0(175)\\ -191(550)\\ -184.4(220)\\ -191.9(250)\\ -173.1(107)\\ -215.0(200) \end{array}$	n.o. n.o. n.o. n.o. n.o. n.o. n.o. n.o.	$\begin{array}{l} \\ \approx -285 (1300) \\ \approx -320 (1000) \\ \approx -315 (>1600) \\ \approx -320 (>1500) \\ \approx -320 (>1500) \\ \approx -320 (1300) \\ \approx -320 (>1500) \\ \text{n.o.} \end{array}$	$\begin{array}{c} C_7D_8\\ C_7D_8\\ CDCl_3\\ CDCl_3\\ C_6D_6\\ CDCl_3\\ C_6D_6\\ CDCl_3\\ C_6D_6\\ C_6D_6\end{array}$	301 348 328 298 298 328 343 343	46.7 65.8 68.0 66.5 67.0 63.4 61.0 69.8	$\begin{array}{c} C_6D_6\\ C_7D_8\\ CDCl_3\\ CDCl_3\\ C_6D_6\\ C_6D_6\\ CDCl_3\\ CDCl_3\\ CDCl_3\end{array}$
92 <i>f</i> 102 <i>d</i> 112 <i>b</i> 122 <i>b</i> 1313 14 ¹⁴	$\begin{array}{l} Pr^{i_{3}}Si \\ (Pr^{i_{2}}N)_{2}B \\ (Pr^{i_{2}}N)_{2}P \\ (Pr^{i_{2}}N)_{2}P(S) \\ (Pr^{i_{2}}N)_{2}P \\ (Pr^{i_{2}}N)_{2}P \end{array}$	H H H Me ₃ Si (Pr ⁱ ₂ N) ₂ P	$\begin{array}{c} -121.4 (45) \\ -114.2 (80) \\ -113.0 (50) \\ -123.8 (62) \\ -120.9 (115) \\ -114.8 (150) \end{array}$	$\begin{array}{r} -62(315)\\ -44.6(430)\\ -23.8(470)\\ -26(870)\\ -74(720)\\ \approx -38(1150)\end{array}$	$\begin{array}{c} \\ -306 (670) \\ -302.6 [78.2]^d \\ \approx -320 (1070) \\ -305.5 [72.1]^d \\ -307.3 [77.3]^d \end{array}$	$C_7D_8 \\ C_7D_8 \\ C_6D_6 \\ C_6D_6 \\ C_6D_6 \\ C_7D_8$	301 348 338 338 338 338 338 338	15.0 36.5 ^c 31.0 40.3 28.7 40.9	$\begin{array}{c} CDCl_3\\ C_7D_8\\ C_6D_6\\ C_6D_6\\ C_6D_6\\ C_7D_8 \end{array}$

^{*a*} Bruker WM 250 and AM 300 spectrometers; solutions *ca.* 15–30% v/v; positive signs indicate high frequency shifts; chemical shift references: ¹³C [SiMe₄, δ (¹³C) (solvent) 20.4 (C₇D₈), 77.0 (CDCl₃), 128.0 (C₆D₆)]; ¹⁴N, ¹⁵N (neat MeNO₂, external Ξ (¹⁴N) = 7226455 Hz, Ξ (¹⁵N) = 10136767 Hz (n.o. = not observed). ^{*b*} Counter ion: SO₃CF₃⁻. ^{*c*} ¹J(¹³C¹¹B) \geq 93 Hz, estimated from the ¹³C linewidth at 348 K. ^d ¹⁵N NMR data, recorded with the INEPT pulse sequence assuming a coupling constant $J(^{15}N^{1}H) \approx 2.5$ Hz;¹¹ ${}^{1}J({}^{31}P{}^{15}N)$ in square brackets in Hz.

We found that ¹⁴N NMR spectroscopy provides a simple and quick way to distinguish the two CNN structural isomers.4

Support of this work by the CNRS is gratefully acknowledged. K. H. v. L. thanks the Alexander von Humboldt-Foundation and Conseil Régional Midi-Pyrénées for a postdoctoral fellowship.

Received, 29th April 1991; Com. 1/02005F

References

- 1 (a) H. Toubro and A. Holm, J. Am. Chem. Soc., 1980, 102, 2093; (b) H. Meier, W. Heinzelmann and H. Heimgartner, Chimia, 1980, 34, 504, 506; (c) C. Wentrup, S. Fisher, A. Maquestiau and R. Flammang, Angew. Chem., Int. Ed. Engl., 1985, 24, 56; (d) H. Bock, R. Dammel, S. Fisher and C. Wentrup Tetrahedron Lett., 1987, 28, 617.
- (a) G. Sicard, A. Baceiredo and G. Bertrand, J. Am. Chem. Soc., 1988, 110, 2663; (b) M. Granier, A. Baceiredo, Y. Dartiguenave, M. Dartiguenave, M. J. Menu and G. Bertrand, J. Am. Chem. Soc., 1990, 112, 6277; (c) M. Granier, A. Baceiredo and G. Bertrand, Angew. Chem., Int. Ed. Engl., 1988, 27, 1350; (d) M. P. Arthur, A. Baceiredo and G. Bertrand, Organometallics, in the press; (e) M. Granier, A. Baceiredo, V. Huch, M. Veith and G. Bertrand, *Inorg. Chem.*, 1991, **30**, 1161; (f) F. Castan, A. Baceiredo, D. Bigg and G. Bertrand, *J. Org. Chem.*, 1991, **56**, 1801; (g) F. Castan, A. Baceiredo and G. Bertrand, Angew. Chem., Int. Ed. Engl., 1989, 28, 1250.
- O. Howarth in Multinuclear NMR, ed. J. Mason, Plenum Press,
- New York, 1987, ch. 5, p. 133. 4 R. O. Duthaler, H. G. Förster and J. D. Robert, *J. Am. Chem.* Soc., 1978, 100, 4974.
- 5 J. Müller, J. Organomet. Chem., 1973, 51, 119.
- 6 F. de Sarlo, A. Brandi, A. Guarna and N. Niccolai, J. Magn. Reson., 1982, 50, 64.
- K. Barlos, G. Hübler, H. Nöth, P. Wanninger, N. Wiberg and B. Wrackmeyer, J. Magn. Reson., 1978, 31, 363.
- D. M. Kanjia, J. Mason, I. A. Stenhouse, R. E. Banks and N. D.
- Venayak, J. Chem. Soc., Perkin Trans. 2, 1981, 975. (a) H. O. Kalinowski, S. Berger and S. Braun, ¹³C-NMR 9 Spectroscopy, Wiley, London 1988; (b) K. Eberl and J. D. Roberts, Org. Magn. Reson., 1981, 17, 180.
- 10 B. Wrackmeyer and K. Horchler, Prog. Nucl. Magn. Reson. Spectrosc., 1990, 22, 209.
- B. Wrackmeyer, S. Kerschl, C. Stader and K. Horchler, Spectro-11 chim. Acta, Part A, 1986, 42, 1113.
- 12 R. Réau, F. Castan, A. Baceiredo and G. Bertrand, unpublished results.
- 13 A. Igau, H. Grützmacher, A. Baceiredo and G. Bertrand, J. Am. Chem. Soc., 1988, 110, 6463.
- 14 A. Baceiredo, A. Igau, G. Bertrand, M. J. Menu, Y. Dartiguenave and J. J. Bonnet, J. Am. Chem. Soc., 1986, 108, 7868.

Of particular interest, ¹⁴N NMR spectroscopy can be applied to reaction solutions. The ${}^{14}N_\alpha$ nuclei give rise to comparatively narrow ¹⁴N NMR signals, which are easily observed even for larger molecules (e.g. 4) at room temperature. This behaviour is similar to that found in related molecules such as azides R-NNN,5 nitrile oxides R-CNO6 and isocyanamides R₂NNC,⁷ where the ¹⁴N nuclei of the linear dicoordinated nitrogen atoms experience only small electric field gradients. The N_{α} chemical shift difference between nitriles imides A and the corresponding diazo compounds C (\approx 70 ppm between, e.g. 1/9, 2/10, and 6/14) is sufficient for a definitive assignment of the structure (Fig. 1). As expected, the nitrogen chemical shifts for the nitrile imides are found in a similar range to those of nitrile oxides.6 The ${}^{14}N_{\beta}$ resonance of nitrile imides was never observed.

When compared with covalent azides, 5,8 this resonance can be expected around $\delta_N\approx$ –300. Unfortunately, for compounds 2-8 this region in the ¹⁴N NMR spectra is dominated by the broad and intense signals due to the amino substituents which would therefore overlap with the ${}^{14}N_\beta$ resonance. However, even in the case of 1 only the narrow ${}^{14}N_{\alpha}$ NMR signal was observed even at +80 °C (Fig. 1). This would indicate that the electric field gradient at the site of the ¹⁴N_b nucleus is very large, causing the ${}^{14}N_{\beta}$ relaxation time T_{Q} to be very short.

For 7^{2b} and 8^{2e} the structures have been determined by X-ray crystallography. Considering the possible resonance structure of nitrile imides, these compounds represent two extremes: 7 is best described as a heteroallenic compound I while 8 shows a heteropropynylic structure II.

In solution these findings are reflected by the $\delta(^{14}N_{\alpha})$ values which compare with the corresponding ¹³C chemical shifts of ketenimines9 (>C=C=N-) and amino-substituted alkynes10 (-C≡C-N<). This comparison shows the correlation existing between the ${}^{14}N_{\alpha}$ shielding and the corresponding resonance structures of the nitrile imide skeleton ($-CN_{\alpha}N_{\beta}$ -). This method could probably be extended to other derivatives, thus providing a simple and straightforward tool in the deduction of electronic structures.